Ферменты это вещества которые входят в состав

Глава IV. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции.

Дорогие читатели! Наши статьи рассказывают о типовых способах решения проблем со здоровьем, но каждый случай носит уникальный характер.

Если вы хотите узнать, как решить именно Вашу проблему - начните с программы похудания. Это быстро, недорого и очень эффективно!


Узнать детали

Ферменты – биологические катализаторы. Значение ферментов

ФЕРМЕНТЫ, органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами.

Ферменты от лат. Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии — энзимология.

Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы. Первые данные о ферментах были получены при изучении процессов брожения и пищеварения.

Большой вклад в исследование брожения внес Л. Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов.

В Дж. Самнер из Корнеллского университета США выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии.

Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата АТФ , присутствуют в клетках всех типов — животных, растительных, бактериальных.

Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции. Все ферменты являются белками, простыми или сложными то есть содержащими наряду с белковым компонентом небелковую часть.

Ферменты — крупные молекулы, их молекулярные массы лежат в диапазоне от 10 до более 1 дальтон Да. Для сравнения укажем мол. Ферменты, катализирующие одинаковые химические реакции, но выделенные из клеток разных типов, различаются по свойствам и составу, однако обычно обладают определенным сходством структуры.

Структурные особенности ферментов, необходимые для их функционирования, легко утрачиваются. Так, при нагревании происходит перестройка белковой цепи, сопровождающаяся потерей каталитической активности. Важны также щелочные или кислотные свойства раствора.

Связано это с тем, что структура белковых молекул, а следовательно, и активность ферментов сильно зависят от концентрации ионов водорода в среде. Не все белки, присутствующие в живых организмах, являются ферментами. Так, иную функцию выполняют структурные белки, многие специфические белки крови, белковые гормоны и т. Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами или кофакторами.

Роль коферментов играют большинство витаминов и многие минеральные вещества; именно поэтому они должны поступать в организм с пищей. Витамины РР никотиновая кислота, или ниацин и рибофлавин, например, входят в состав коферментов, необходимых для функционирования дегидрогеназ. Цинк — кофермент карбоангидразы, фермента, катализирующего высвобождение из крови диоксида углерода, который удаляется из организма вместе с выдыхаемым воздухом.

Железо и медь служат компонентами дыхательного фермента цитохромоксидазы. Вещество, подвергающееся превращению в присутствии фермента, называют субстратом.

Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента. Этот процесс представляют следующим образом:. Продукт тоже можно считать субстратом, поскольку все ферментативные реакции в той или иной степени обратимы. Правда, обычно равновесие сдвинуто в сторону образования продукта, и обратную реакцию бывает трудно зафиксировать.

Скорость ферментативной реакции зависит от концентрации субстрата [S] и количества присутствующего фермента. Эти величины определяют, сколько молекул фермента соединится с субстратом, и именно от содержания фермент-субстратного комплекса зависит скорость реакции, катализируемой данным ферментом. В большинстве ситуаций, представляющих интерес для биохимиков, концентрация фермента очень мала, а субстрат присутствует в избытке.

Кроме того, биохимики исследуют процессы, достигшие стационарного состояния, при котором образование фермент-субстратного комплекса уравновешивается его превращением в продукт. В этих условиях зависимость скорости v ферментативного превращения субстрата от его концентрации [S] описывается уравнением Михаэлиса — Ментен:.

Из этого уравнения следует, что при малых [S] скорость реакции возрастает пропорционально концентрации субстрата. Однако при достаточно большом увеличении последней эта пропорциональность исчезает: скорость реакции перестает зависеть от [S] — наступает насыщение, когда все молекулы фермента оказываются занятыми субстратом.

Выяснение механизмов действия ферментов во всех деталях — дело будущего, однако некоторые важные их особенности уже установлены. Каждый фермент имеет один или несколько активных центров, с которыми и связывается субстрат.

Активный центр формируют особые химические группы в молекуле фермента, ориентированные друг относительно друга определенным образом. Происходящая так легко потеря ферментативной активности связана именно с изменением взаимной ориентации этих групп.

Молекула субстрата, связанного с ферментом, претерпевает изменения, в результате которых разрываются одни и образуются другие химические связи. Чтобы этот процесс произошел, необходима энергия; роль фермента состоит в снижении энергетического барьера, который нужно преодолеть субстрату для превращения в продукт.

Как именно обеспечивается такое снижение — до конца не установлено. Высвобождение энергии при метаболизме питательных веществ, например при окислении шестиуглеродного сахара глюкозы с образованием диоксида углерода и воды, происходит в результате последовательных согласованных ферментативных реакций. В животных клетках в превращениях глюкозы в пировиноградную кислоту пируват или молочную кислоту лактат участвуют 10 разных ферментов.

Этот процесс называется гликолизом. Первая реакция — фосфорилирование глюкозы — требует участия АТФ. На превращение каждой молекулы глюкозы в две молекулы пировиноградной кислоты расходуются две молекулы АТФ, но при этом на промежуточных этапах из аденозиндифосфата АДФ образуются 4 молекулы АТФ, так что весь процесс в целом дает 2 молекулы АТФ. Далее пировиноградная кислота окисляется до диоксида углерода и воды при участии ферментов, ассоциированных с митохондриями.

Эти превращения образуют цикл, называемый циклом трикарбоновых кислот, или циклом лимонной кислоты. Окисление одного вещества всегда сопряжено с восстановлением другого: первое отдает атом водорода, а второе его присоединяет. Катализируют эти процессы дегидрогеназы, обеспечивающие перенос атомов водорода от субстратов к коферментам.

В цикле трикарбоновых кислот одни специфические дегидрогеназы окисляют субстраты с образованием восстановленной формы кофермента никотинамиддинуклеотида, обозначаемого НАД , а другие окисляют восстановленный кофермент НАДЧН , восстанавливая другие дыхательные ферменты, в том числе цитохромы железосодержащие гемопротеины , в которых атом железа попеременно то окисляется, то восстанавливается.

В конечном итоге восстановленная форма цитохромоксидазы, одного из ключевых железосодержащих ферментов, окисляется кислородом, попадающим в наш организм с вдыхаемым воздухом. Когда происходит горение сахара окисление кислородом воздуха , входящие в его состав атомы углерода непосредственно взаимодействуют с кислородом, образуя диоксид углерода. В отличие от горения, при окислении сахара в организме кислород окисляет собственно железо цитохромоксидазы, но в конечном итоге его окислительный потенциал используется для полного окисления сахаров в ходе многоступенчатого процесса, опосредуемого ферментами.

На отдельных этапах окисления энергия, заключенная в питательных веществах, высвобождается в основном маленькими порциями и может запасаться в фосфатных связях АТФ.

В этом принимают участие замечательные ферменты, которые сопрягают окислительные реакции дающие энергию с реакциями образования АТФ запасающими энергию.

Этот процесс сопряжения известен как окислительное фосфорилирование. Не будь сопряженных ферментативных реакций, жизнь в известных нам формах была бы невозможна. Ферменты выполняют и множество других функций.

Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов. Для синтеза всего огромного множества химических соединений, обнаруженных в сложных организмах, используются целые ферментные системы.

Для этого нужна энергия, и во всех случаях ее источником служат фосфорилированные соединения, такие, как АТФ. Ферменты — необходимые участники процесса пищеварения.

Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза расщепления белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа.

Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи.

Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника. Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза.

В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка — рубец. С помощью микроорганизмов происходит переваривание пищи и у термитов.

Ферменты находят применение в пищевой, фармацевтической, химической и текстильной промышленности. В качестве примера можно привести растительный фермент, получаемый из папайи и используемый для размягчения мяса.

Ферменты добавляют также в стиральные порошки. Осознание ключевой роли ферментов во всех клеточных процессах привело к широкому их применению в медицине и сельском хозяйстве. Нормальное функционирование любого растительного и животного организма зависит от эффективной работы ферментов. В основе действия многих токсичных веществ ядов лежит их способность ингибировать ферменты; таким же эффектом обладает и ряд лекарственных препаратов.

Нередко действие лекарственного препарата или токсичного вещества можно проследить по его избирательному влиянию на работу определенного фермента в организме в целом или в той или иной ткани.

Например, мощные фосфорорганические инсектициды и нервно-паралитические газы, разработанные в военных целях, оказывают свой губительный эффект, блокируя работу ферментов — в первую очередь холинэстеразы, играющей важную роль в передаче нервного импульса.

Ферменты: что есть и от чего отказаться, чтобы заставить их работать

Ферменты - это слово знакомо каждому из нас, а вот что оно означает, понятно далеко не всем. Иногда еще используется их греческое название — энзимы, что, впрочем, ясности не добавляет. Вспоминаем химию. И ферменты выступают здесь катализаторами процессов. На каждом этапе пищеварения работают свои группы ферментов.

Ферменты пищеварения

В более широком смысле пищеварительными ферментами также называют все ферменты, расщепляющие крупные обычно полимерные молекулы на мономеры или более мелкие части. Пищеварительные ферменты находятся в пищеварительной системе человека и животных. Кроме этого, к таким ферментам можно отнести внутриклеточные ферменты лизосом. Эти ферменты вырабатываются такими железами, как слюнные железы , железы желудка, поджелудочная железа и железы тонкой кишки. Часть ферментативных функций выполняется облигатной кишечной микрофлорой. По субстратной специфичности пищеварительные ферменты делятся на несколько основных групп:. Слюнные железы секретируют в полость рта альфа-амилазу птиалин , которая расщепляет высокомолекулярный крахмал до более коротких фрагментов и до отдельных растворимых сахаров декстрины , мальтоза , мальтриоза.

Биокатализаторы-ферменты

Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу. Ферментативная активность может регулироваться активаторами повышаться и ингибиторами понижаться. Наука о ферментах называется энзимологией , а не ферментологией чтобы не смешивать корни слов латинского и греческого языков. Однако механизм этих явлений был неизвестен [3]. Эта точка зрения господствовала в науке в течение длительного времени [4] и шла вразрез с господствовавшей тогда теорией брожения Ю. Либиха , согласно которой все процессы брожения представлялись чисто химическими явлениями каталитического характера будто бы спиртовое брожение происходит вследствие того, что молекулярные колебания разлагающихся частиц дрожжей передаются сахару и сахар начинает распадаться на спирт и углекислый газ; таким образом дрожжи вызывают брожение не при жизни, а только после своей смерти [5]. Различные точки зрения о природе спиртового брожения в теоретическом споре Л.

ФЕРМЕНТЫ, органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами.

.

.

.

ВИДЕО ПО ТЕМЕ: ФЕРМЕНТЫ. ВСЯ ПРАВДА О ПРЕПАРАТАХ ДЛЯ ПЕРЕВАРИВАНИЯ ПИЩИ (0+)

Комментариев: 3

  1. new_tech2001:

    “…хорошо, если мед бодяжат сахаром, подкармливая им пчел…” и далее по тексту автора…Автору пора-бы знать, если взялся за “перо”, что мед, полученный при переработке сахара пчелами по ГОСТу является “медом натуральным, сахарным, другое дело, если сахарный сироп разбавляют в натуральном меде, тогда это ,действительно, подделка. Падевый мед тоже является натуральным и без ограничений подлежит продаже, правда, нужно указывать, что это мед падевый. Кстати, в Европе он ценится намного больше, чем у нас. У нас его, скорее, остерегаются, хотя, в нем намного больше полезных мин. веществ, он, как правило,-ароматнее многих медов и отличается темным цветом, даже чаще-иссиня-темным. Как кто -то в комментариях заметил, что нужно брать мед у знакомых пчеловодов-это самый надежный способ получить качественный мед. Пишу эти слова не по учебникам, а исходя, более, чем из 35 летнего пчеловодного стажа…

  2. ss:

    Таким образом, удивительная способность человека переносить длительное голодание (до 50 дней) заключается в переходе организма на эндогенное, т.е. внутреннее питание – за счет резервов своего организма, а также синтеза необходимых органических соединений из воды, углекислого газа и азота воздуха (как при фотосинтезе).

  3. airgidi:

    Александр, а лучше вместо “стрелкового урезонивания” объять “старых”, “не совсем людей, “неумных”, “тупых” любовью, заботой, пониманием. Создать эдакий райский дом престарелых, оазис, рай. “Вы слышали, что сказано: „Люби ближнего и ненавидь врага“.  А я говорю вам: не переставайте любить своих врагов и молиться за тех, кто вас преследует,  чтобы вам оказаться сыновьями вашего Отца, который на небесах, потому что он повелевает солнцу восходить над злыми и добрыми и посылает дождь на праведных и неправедных.  Ведь если вы любите только тех, кто любит вас, какая вам награда? Разве не то же самое делают и сборщики налогов?  И если вы приветствуете только своих братьев, что особенного делаете? Разве не так же поступают и люди из других народов?  Поэтому будьте совершенны, как совершенен ваш небесный Отец” Мф5:43